THEOREM 5-9

Section 5.4

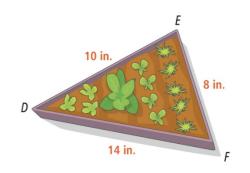
If two sides of a triangle are not congruent, then the larger angle lies opposite the longer side.

PROOF: SEE EXERCISE 13.

If... b > a

C A

Then... $m \angle B > m \angle A$

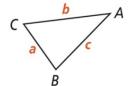

C

To support a triangular piece of a float, a brace is placed at the largest angle and a guide wire is placed at the smallest angle.

Which angle is the largest?
Which angle is the smallest?
SOLUTION

Lucas sketched a diagram for a garden box.

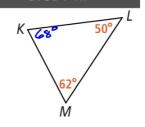
List the angles from least to greatest.

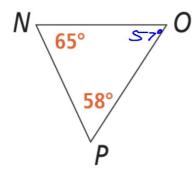

Converse of Theorem 5-9

If two angles of a triangle are not congruent, then the longer side lies opposite the larger angle.

PROOF: SEE EXAMPLE 3.

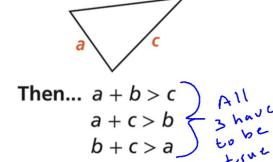
If... $m \angle B > m \angle A$


Then... b > a


Which side of $\triangle \mathit{KLM}$ is the longest?

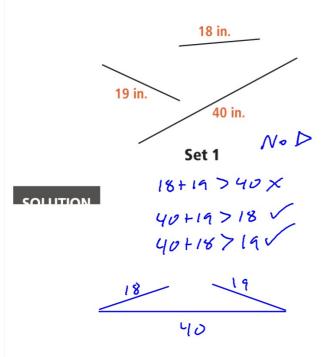
SOLUTION

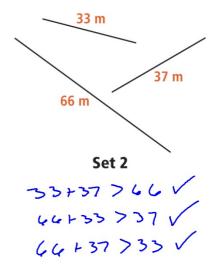
List the sides of triangles NOP from least to greatest.



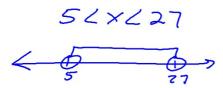
NP, NO, OP

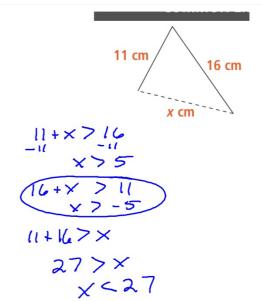
Triangle Inequality Theorem

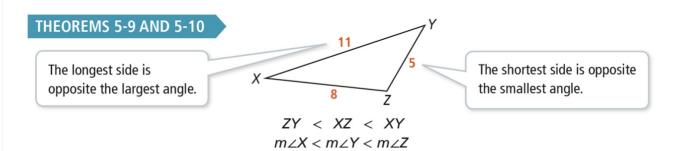

The sum of the lengths of any two sides of a triangle is greater than the length of the third side.

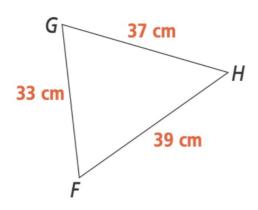

PROOF: SEE EXERCISE 14.

If...

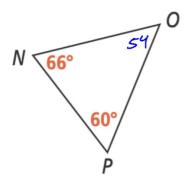

A. Which of the following sets of segments could be the sides of a triangle?




B. A triangle has sides that measure 11 cm and 16 cm. What are the possible lengths of the third side?


Inequalities in One Triangle

THEOREM 5-11 Triangle Inequality Theorem


The sum of the lengths of any two sides is greater 5+8>11 than the length of the third side. 5+11>8 8+11>5

Identify the angles of $\triangle FGH$. SEE EXAMPLE 2.

- 18. Which angle is the smallest?
- 19. Which angle is the largest?

Identify the sides of $\triangle NOP$. SEE EXAMPLES 3 AND 4.

- **20.** Which side is the longest? \overline{OP}
- 21. Which side is the shortest? NP

Determine whether the side lengths could form a triangle. SEE EXAMPLE 5.

22. 13, 15, 9
$$13+15>9$$

$$13+15>9$$

$$15+1>13$$
23. 8, 15, 7
$$15+7>8$$

$$8+7>15$$
24. 35, 20, 11
$$35+20>11$$

$$20+11>35$$

$$05+32>40$$
32 +40>65 Yes
$$65+40>32$$

Given two sides of a triangle, determine the range of possible lengths of the third side. SEE EXAMPLE 5.

26. 10 in. and 12 in. $\frac{10+12>\times}{10+\times}$ $\frac{22>\times}{10+\times}$ $\frac{22>\times}{10+\times}$ $\frac{22\times}{10+\times}$ $\frac{22\times}$

28. 200 m and 300 m 200+300>x 500>x 1002x2500 x 200+>300 x 200+>300 x 200

29. 90 km and 150 km

60 < x < 240